
ME THODO LOG I C A L A R T I C L E

Six solutions for more reliable infant research

Krista Byers-Heinlein1 | Christina Bergmann2 | Victoria Savalei3

1Department of Psychology, Concordia

University, Montreal, Canada

2Language Development Department, Max

Planck Institute for Psycholinguistics,

Nijmegen, the Netherlands

3Department of Psychology, University of

British Columbia, Vancouver, Canada

Correspondence

Krista Byers-Heinlein, Department of

Psychology, Concordia University, Montreal,

Canada.

Email: k.byers@concordia.ca

Funding information

Natural Sciences and Engineering Research

Council of Canada, Grant/Award Number:

2018-04390

Handling Editor: Moin Syed

Abstract

Infant research is often underpowered, undermining the

robustness and replicability of our findings. Improving the

reliability of infant studies offers a solution for increasing

statistical power independent of sample size. Here, we dis-

cuss two senses of the term reliability in the context of

infant research: reliable (large) effects and reliable measures.

We examine the circumstances under which effects are

strongest and measures are most reliable and use synthetic

datasets to illustrate the relationship between effect size,

measurement reliability, and statistical power. We then pre-

sent six concrete solutions for more reliable infant research:

(a) routinely estimating and reporting the effect size and

measurement reliability of infant tasks, (b) selecting the best

measurement tool, (c) developing better infant paradigms,

(d) collecting more data points per infant, (e) excluding

unreliable data from the analysis, and (f) conducting more

sophisticated data analyses. Deeper consideration of mea-

surement in infant research will improve our ability to study

infant development.

K E YWORD S
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Highlights

• Reliable studies are those with large effect sizes (group-level

studies) and/or with good measurement reliability (individual dif-

ferences studies).

• Measurement reliability in infant research is seldom reported,

and low in cases where it has been estimated.

• Observed effect sizes and resulting power are typically low.
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• Low reliability has concerning implications for conducting robust

studies and drawing reliable conclusions for theory.

• We present six solutions relevant to both individual researchers

and the field at large for more reliable infant research, which can

boost statistical power independent of sample size.

Studying human behaviour is difficult, particularly when those humans are tiny, squirmy, and do not follow instruc-

tions (i.e., infants). Since the 1950s, infant researchers have developed innovative instruments that capitalize on

infants' natural repertoire of behaviours such as looking, reaching, and sucking. These have provided important

insights into infant development (Aslin, 2014). Yet, infant researchers seldom consider the measurement properties

of our research tools, even though the importance of accurate measurement has been understood by psychometri-

cians for more than 100 years (Spearman, 1904). To be able to draw robust conclusions about infant development—

including when theorizing, modelling, or designing studies and interventions—we need to account for our ability to

measure it. This paper will overview the role of measurement in infant behavioural research, focusing on effect size

and measurement reliability, and provide practical solutions that will help both individual researchers and the field at

large to improve the reliability of infant research.

1 | MEASUREMENT IN INFANT RESEARCH

Infant researchers use carefully-designed experimental tasks to study constructs as diverse as attention, word learn-

ing, and theory of mind. The process of creating a number that represents each participant's score on a variable

under study is called measurement, as discussed by Flake and Fried (2020). These authors provide a very brief orien-

tation to measurement theory; readers looking for a more thorough introduction are referred elsewhere

(e.g., Bandalos, 2018; Crocker & Algina, 2008; McDonald, 2011). Key terms used throughout this paper are defined

in Table 1, and are italicized in the text.

Making accurate measurements is hard. For example, in order to detect elusive subatomic particles, billions of

dollars were spent to build the Large Hadron Collider (CERN, 2021). Although budgets are not as large, and the

object of study is not as tiny, infant research too faces measurement challenges. Any measurement—be it of an

infant or of a particle—is affected by measurement error. Measurement error is the difference between a true value

(i.e., an individual's true score) and the measured value (i.e., an individual's observed score). Measurement error is

assumed to be random, such that a measured value fluctuates around the true value but averages out in the long

run. No measure can be totally precise, and different measures have different degrees of precision. The more precise

the measurement, the easier it is to detect the phenomenon of interest if it exists.

Measurement error reduces statistical power, defined as the probability of detecting a true effect (see Button

et al., 2013). For example, imagine that a researcher wishes to measure children's height, but the only instrument

available involves stacking and counting homemade chocolate chip cookies. Cookie-based height measurement is

likely to have substantial measurement error, given variations in cookie height and challenges in stacking cookies

consistently. Thus, it could be difficult to observe that 10-year-olds (on average 68 cookies tall) tend to be shorter

than 11-year-olds (on average 69 cookies tall), or that the 10-year-olds that are the tallest in the class today would

likely be the tallest in the class next year. Such results would not be impossible to observe even with this suboptimal

measurement instrument, but the researcher would have to include a very large sample of children to detect such

relatively small effects. If a researcher was instead interested in a larger effect, say whether 10-year-olds are taller

than 1-year-olds (on average 38 cookies tall), or that individual children grow between the ages of 1 and 10 years,

they would easily have sufficient power even with a small sample. As these examples illustrate, there is an important

relationship between measurement error, statistical power, and sample size.
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Infant studies are often underpowered (Bergmann et al., 2018; Margoni & Shepperd, 2020; Oakes, 2017), and

the field has primarily focused on increasing sample size as a way to increase statistical power. Some examples are

innovative recruitment methods for lab-based studies (Brand, Gans, Himes, & Libster, 2019; Brouillard & Byers-

Heinlein, 2019), testing infants in alternate settings such as in museums or online (Callanan, 2012; Scott, Chu, &

Schulz, 2017; Scott & Schulz, 2017; Sheskin et al., 2020), and conducting large-scale multi-lab collaborations (Byers-

Heinlein et al., 2020; ManyBabies Consortium, 2020). However, holding sample size constant, statistical power can

also be increased by decreasing measurement error (e.g., continuing with the cookie example, by switching from

haphazardly-shaped homemade cookies to more standardized factory-baked cookies). Decreasing measurement

error increases observed effect sizes and boosts measurement reliability, two key concepts that are discussed more

fully in the next section. While infant researchers increasingly consider the role of effect size in experimental design

and interpretation, much less attention has been paid to measurement reliability. In this paper, we first identify

TABLE 1 Definition of key terms

Term Definition

Measurement The process of assigning numbers (or scores) to individuals to represent their standing on a

variable.

True score The true value of a measured variable. The true score can never be measured directly, and

can only be inferred. The true score is the value we would obtain if we could measure the

same individual over and over again (without any repeated testing effects), and average

the resulting observations.

Observed score The value of a measurement that has been taken. It is a combination of the true score and

measurement error, following the equation: Observed score = true score + measurement

error

Measurement error The difference between the observed score and the true score. Measurement error can

never be observed directly, but its magnitude can be inferred. The more measurements are

available, the better this inference will be.

Statistical power The probability of detecting an effect of a certain size, given that it exists. Researchers in

psychology often aim for 80%, 90%, or greater power. Power is higher with larger sample

sizes, larger effects, and more reliable measures.

Effect size The strength of the relationship between measured variables. Effect size estimates are

usually expressed on a standardized metric, for example, standardized mean difference

(Cohen's d, Hedge's g) or a correlation coefficient (Pearson's r).

Reliability The precision or the consistency of a measurement instrument when a measurement is

repeated. Formally, it can be expressed by the equation reliability = variance of true

scores/variance of observed scores, or alternately reliability = variance of true scores/

(variance of true scores + variance of measurement error). If the variance in the true

scores is constant, reliability will increase as measurement error decreases.

Large effect An effect that exceeds typical effect sizes for the population and method in a study and/or

that is detectable with small sample sizes.

Note that there is no consensus definition of either specific effect size or sample size values

or formal criteria of what constitutes large effects. In this paper, we adopt the ad hoc

definition of being able to detect an effect with a small sample size.

Reliable measure A measure with high precision (i.e., a low amount of measurement error). Such a measure will

have a high ratio of true over total score variance when administered to a population with

sufficient variation in the true scores.

Sample size The number of observations at the participant level.

Attenuation due to

unreliability

A phenomenon whereby the true correlation between two measures or an effect size is an

experiment is underestimated due to measurement error.

BYERS-HEINLEIN ET AL. 3 of 19
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several issues related to reliability in infant research and then suggest steps that both individual researchers and the

field at large can take to improve our research practices.

2 | RELIABLE (LARGE) EFFECTS VERSUS RELIABLE MEASURES

The term ‘reliable’ is sometimes used in a casual way, to describe a method that works well to answer a research

question. However, what makes a measure good for answering a research question depends on whether the

research takes a correlational versus an experimental approach (Hedge, Powell, & Sumner, 2018; Pérez-Edgar,

Vallorani, Buss, & LoBue, 2020). The correlational approach is interested in individual differences, for example,

whether infants' performance on two different tasks is related. In correlational research, the term ‘reliability’ usually
refers to measurement reliability, defined as the precision or the consistency of a specific instrument when a mea-

surement is repeated (Hedge et al., 2018). This corresponds to the sense of the word reliability used in the methodo-

logical and psychometrics literature. By contrast, the experimental approach asks questions at the group level, for

example, whether infants at a particular age have a particular ability. The methodological and psychometrics litera-

ture uses the term ‘effect size’ to refer to this meaning, rather than the word ‘reliable’. For consistency, the rest of

this paper will use the terms ‘measurement reliability’ and ‘effect size’ to refer to these two distinct aspects of mea-

surement. Note that issues of measurement are closely intertwined with recent discussions of replicability, although

those discussions have largely focused on whether the underlying effect being measured is real and accurately

described (e.g., Davis-Kean & Ellis, 2019; Margoni & Shepperd, 2020).

2.1 | Large effects

Informally, researchers view large effects as ones that exceed typical effect sizes for the population and method in a

study and/or that are detectable with small sample size. For example, the difference in height between 10-year-olds

and 1-year-olds could be viewed as a large effect: a sample of only a few children is needed to detect this effect, as

all 10-year-olds are taller than all 1-year-olds. By contrast, the difference in height between 10-year-olds and

11-year-olds is a relatively small effect: a sample of many children would be needed to detect this effect, given that

some 10-year-olds will be taller than some 11 year-olds. Note that our definition purposely leaves open what effect

sizes are considered ‘typical’ and what sample size is considered ‘small’, which will depend on the field, the research

question, the method, the population, and so on (see also Hedge et al., 2018). The observed effect size can be quan-

tified via standardized effect size metrics such as Cohen's d. For a within-subjects design, this measure is calculated

as the ratio of the mean difference to the standard deviation of the mean difference:

d¼M=SD

A higher Cohen's d corresponds to a stronger observed effect such that, all else being equal, a higher Cohen's

d implies greater statistical power. Effect sizes can be estimated based on group-level information usually reported in

papers (i.e., sample size, together with either means/standard deviations or test statistics such as t-values). Note that

the standard deviation (the denominator in the formula) depends both on true underlying variation across partici-

pants as well as variation due to measurement error. It is not possible to determine which source of variation is

greater from the observed effect size alone, as neither the underlying true effect nor measurement error can be mea-

sured directly.

A recent meta-analysis of meta-analyses of a variety of topics in infant research found wide variability among

observed effect sizes, ranging from Cohen's d = 0.12 to d = 1.24 with a median of d = 0.45 (Bergmann et al., 2018).

For example, meta-analytic estimates suggested that phonotactic learning had the smallest average observed effect

4 of 19 BYERS-HEINLEIN ET AL.
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size (Cristia, 2018), while online word recognition had the largest average observed effect size (Frank, Lewis, &

MacDonald, 2016). Thus, the observed effect size in infant research varies significantly by domain, meaning that

some group-level phenomena can be detected more readily (i.e., with more statistical power) than others. There is an

additional method effect: when taking the topic into account, methods commonly used in infant research, such as

conditioned head turn and central fixation, are independently related to the observed effect size (Bergmann

et al., 2018; see also The ManyBabies Consortium, 2020).

2.2 | Reliable measures

A reliable measure is defined as one with high precision, producing consistent values when the measurement is

repeated. For example, when measuring children's height, a measurement taken with a laser ruler will be much more

reliable than one taken by stacking chocolate chip cookies. Theoretically, measurement reliability is defined as the

ratio of true score variance to observed score variance (which itself decomposes into the sum of true score variance

and measurement error variance):

rxx ¼ varT=varO ¼ varT= varTþvarEð Þ

In practice, measurement reliability can only be estimated when infants contribute two or more measures of the

same construct, either during the same testing session (e.g., multiple trials of the same type) or during different test-

ing sessions. Unlike effect size, it is not possible to estimate reliability if individuals only contribute a single score.

Unfortunately, measurement reliability statistics are seldom reported in the infant literature—an important point

we will return to in a later section. Where measurement reliability has been reported in infant experiments, it has

either varied widely across studies and tasks (speech perception tasks; Cristia, Seidl, Junge, Soderstrom, &

Hagoort, 2014), or has been close to zero (visual preference procedures; DeBolt, Rhemtulla, & Oakes, 2020; Nighbor,

Kohn, Normand, & Schlinger, 2017), although some earlier work reported moderate measurement reliability (infant

attentional measurements; Colombo, Mitchell, & Horowitz, 1988). Note that in nearly all cases, estimated measure-

ment reliability was less than 0.5, which is generally considered poor, because there is more variance introduced by

the measure compared to the true effect of interest and thus participants will not be ranked consistently (Koo &

Li, 2016).

3 | GENERALIZABILITY OF EFFECT SIZES AND MEASUREMENT
RELIABILITY

Estimates of effect size and measurement reliability relate to the measurement of a particular sample under particu-

lar circumstances. Thus, we would not expect values to be identical for infants of different backgrounds or ages, or

those tested in different contexts (e.g., in the lab versus remotely at home), even when tested in the same apparent

task. For example, we might expect infants of different ages to show different effect sizes on the same task, and usu-

ally expect that older infants will show larger effect sizes than younger infants. Similarly, a sample of 18-month-old

infants might have very similar abilities (true scores) on a task, whereas a sample of 9- to 18-month-old infants might

have a wide range of abilities. That is, assuming that the amount of measurement error remains constant across age,

estimated reliability will be higher for the group with the wide age range than the group with the narrow age range,

as the measure will more consistently rank the infants with more varying abilities than infants with more similar abili-

ties. The more similar two studies are with respect to their methods and the population tested, the more similar we

expect their effect sizes and measurement reliabilities to be.

BYERS-HEINLEIN ET AL. 5 of 19

 15227219, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/icd.2296 by M

PI 378 Psycholinguistics, W
iley O

nline L
ibrary on [13/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 | UNDERSTANDING EFFECT SIZE AND MEASUREMENT RELIABILITY
THROUGH A SET OF SYNTHETIC DATASETS

Perhaps surprisingly, paradigms that produce the largest effect sizes are not necessarily the ones with the highest

measurement reliability (Hedge et al., 2018). In within-subjects designs, the observed effect sizes will be largest

when all participants obtain the maximum score, in which case true between-participant variability is necessarily low

(e.g., in a habituation task in which all infants successfully detect a stimulus change), while reliability will be highest

when true between-participant variability is high (e.g., a habituation task in which some infants detect a stimulus

change better than others). For infant research, this means that the methods that are optimal for producing the larg-

est group-level effects may be different from the ones that are optimal for detecting individual differences. For

example, testing infants in an easy task could yield a large effect size but low measurement reliability (due to little

true between-participant variability), while testing them in a harder task could yield a smaller effect size but high

reliability.

We illustrate this apparent paradox via four synthetic datasets, which we could imagine arising from a set of dif-

ferent studies analysing infants' looking time difference scores (e.g., looking time in experimental trials minus looking

time in control trials). Recall that variability in individual scores arises from two distinct sources: true score variability

(i.e., real underlying differences between infants, which can never be measured directly) and measurement error

(which is by definition random, meaning it does not systematically bias scores and averages out to zero). Unlike with

real data where the true score and measurement error are never known and their relative contribution to the overall

variance in scores can only be inferred, using synthetic data allows us to set these to whatever values we choose.

These synthetic datasets were created by crossing these two sources of variability, such that true score variability

and measurement error were either low (SD = 0.5) or high (SD = 1). The mean of participants' true difference scores

was set at 1 for all datasets. Observations were assumed to be normally distributed. Based on these parameters, we

calculated observed effect sizes (Cohen's d) and measurement reliability (rxx) for each dataset.1 The code used to

generate all Tables and Figures presented in this article is available via the Open Science Framework at https://osf.

io/e7j9k/.

To make this example more concrete, we can imagine that infants have either been tested in a quiet laboratory

(which we will assume yields relatively small measurement error) or in a noisy community center full of distractions

(which we will assume yields relatively large measurement error). Moreover, we compare two types of samples:

infants sampled within a narrow age range (low true variability), and infants sampled across a wide age range (high

true variability). We observe that each group has an average one-second looking time difference to an experimental

stimulus compared to a control stimulus.

Figure 1 plots infants' true scores (left side of each panel) and their observed scores which include measurement

error (right side of each panel) for a hypothetical 50 infants per group. Observed means, standard deviations,

observed effect size (Cohen's d) and measurement reliability (rxx) are indicated at the bottom of each panel. Note that

the true (latent) effect size is d = 1 in panels 1A and 1B and d = 2 in panels 1C and 1D, due to differences in their

variability (in our example: between-participant differences due to a narrow or wide age range).

From Figure 1, we can make several observations about the interplay between effect size and measurement reli-

ability. First, measurement reliability is highest when true variability is high and measurement error is low (panel 1B).

By contrast, the observed effect size is largest when both true variability and measurement error are low (panel 1D).

Reducing measurement error is thus optimal in all cases, boosting both effect sizes and measurement reliability.

However, greater true score variability yields higher measurement reliability but smaller effect sizes. Finally,

observed effect size is affected by total variability, but agnostic to whether this variability is due to true score vari-

ability or measurement error (e.g., panels 1B and 1C have identical values of d). That is, without knowing the reliabil-

ity of a measure, we cannot determine whether infants' scores vary due to measurement error or due to true

individual differences.

6 of 19 BYERS-HEINLEIN ET AL.

 15227219, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/icd.2296 by M

PI 378 Psycholinguistics, W
iley O

nline L
ibrary on [13/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://osf.io/e7j9k/
https://osf.io/e7j9k/


A key take-home message is that a method can produce a large effect size but have low measurement reliability,

or conversely produce a small effect size but have high measurement reliability. Reducing measurement error is

always beneficial, but maximizing true variation across participants is important for questions related to individual

differences, though not for questions related to group performance. Without measuring both the effect size and reli-

ability of our measures, we cannot know which infant measures are suited to which research purposes.

5 | THE PROBLEM WITH SMALL EFFECT SIZES AND LOW
MEASUREMENT RELIABILITY

At this point, most infant researchers are aware that in experimental studies, using tasks that produce small effect

sizes will result in low statistical power at typical sample sizes (e.g., 12–24 infants per cell; Oakes, 2017). Table 2

illustrates the relationship between sample size and effect size to achieve 80% power using a two-tailed t test,

α = .05, both for independent samples and paired samples/single sample (note that power calculations are identical

for these latter two types of tests). Values were calculated R (R Core Team, 2020). Larger effect sizes sharply reduce

the sample size needed to achieve sufficient statistical power. In fact, when measuring large effects, the required

sample sizes are quite reasonable. Note that well-powered samples will differ for other statistical tests, for example,

they will need to be larger to detect interactions.

What is often less understood by infant researchers is that low measurement reliability leads to low statistical

power in correlational studies. This is because, in correlational studies, statistical power depends on the measure-

ment reliabilities of both constructs being measured (Trafimow, 2005). Researchers often think about the true correla-

tion that they expect between their variables. However, due to a statistical phenomenon called attenuation of

correlation due to unreliability, the observed correlation will always be weaker than the true correlation unless

F IGURE 1 True and observed scores for four synthetic datasets, under conditions of high/low true variability,
and large/small measurement error. N = 50 points are plotted to illustrate. Expected means, standard deviations
(SD), observed Cohen's d, and measurement reliability (rxx) are shown. True (latent) Cohen's d is 1 in panels 1A and
1B, and 2 in panels 1C and 1D

BYERS-HEINLEIN ET AL. 7 of 19
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measurement reliability is perfect2 (Spearman, 1904). Table 3 (adapted from Hedge et al., 2018) illustrates the relation-

ship between measurement reliability (rxx), the true correlation between two variables (true r), the observed correlation

between two variables (observable r), and the sample size necessary to achieve 80% power in a Pearson's correlation

test. For simplicity, we assume that the two variables that will be correlated have the same measurement reliability (rxx).

As before, improving measurement reliability can decrease the sample size necessary to achieve a particular level of sta-

tistical power, or can improve power at identical sample size. Conversely, combinations of low measurement reliability,

low true correlation, and/or small sample size will result in low statistical power.

Given that, in many cases, the measurement reliability of infant experimental tasks may be low, it is crucial to

consider how observed correlations in infant research should be interpreted. For example, imagine a researcher test-

ing infants' performance on a task at age 18 months and again at age 24 months. Following Table 3, even if the true

correlation of infants' abilities at the two timepoints is 0.7 (so performance is reasonably stable), if the measurement

reliability of the task is low (0.2), the sample must include 397 infants to detect the observable correlation with 80%

power. In fact, due to attenuation of correlation, the observable correlation is r = .14, even though the true correla-

tion is r = .7. The same issue arises for correlations computed on concurrent measurements, for example correlating

task performance and vocabulary size. When measurement reliability is low, observing a small correlation could be

due to a small true correlation or low measurement reliability of one or both measures. When a measure is unreliable

and a large correlation is observed, then this correlation is likely due to chance, rather than reflecting the true under-

lying relationship.

In sum, low measurement reliability makes it difficult to detect true effects in correlational studies, just as small

effect sizes make it difficult to detect true effects in experimental studies. Given the low or unknown reliabilities for

many infant tasks, observed correlations between them will often be misleading; if the reliability of one or both mea-

sures is low, a small correlation would be obtained even when two constructs are strongly related. In the next sec-

tion, we review six practical solutions for more reliable infant research.

TABLE 2 Relationship between observed effect size (Cohen's d) and sample size (N) to achieve 80% power in a
two-tailed, independent samples and paired samples/single sample t test, α = .05

Effect size (Cohen's d) N—Independent samples t test N—Paired samples/single sample t test

1.0 17 10

.8 26 14

.6 45 24

.4 99 51

.2 393 198

TABLE 3 Relationship between measurement reliability, true correlation between two variables, observable
correlation, and sample size necessary to achieve 80% power (α = .05)

True r = .7 True r = .3

Reliability of measurement (rxx) Observable r N Observable r N

1.0 .7 13 .3 84

.6 .42 41 .18 239

.2 .14 397 .06 2,117

Note: These values can also be calculated using the formula in Footnote 2. Adapted from Hedge et al. (2018), Table 5.
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6 | SOLUTIONS FOR INCREASING EFFECT SIZE AND MEASUREMENT
RELIABILITY OF INFANT RESEARCH

6.1 | Solution 1: Routinely report effect size and measurement reliability

To improve the robustness of our research, infant researchers must begin by determining the effect sizes and mea-

surement reliability of existing methods. Fortunately, effect size estimates are largely available from the infant litera-

ture, either because they have been included in published reports (which is increasingly standard practice) or

because they can be readily computed from available information (i.e., means and standard deviations or exact test

statistics such as t-values). However, similar to other fields that use behavioural tasks (Parsons, Kruijt, & Fox, 2019),

measurement reliability estimates are seldom reported in infant research. Moreover, it is usually impossible to esti-

mate measurement reliability from the information reported in published papers.

There are multiple approaches to estimating measurement reliability that might be appropriate for infant

research, and here we provide a brief overview. Measurement reliability can be estimated any time infants provide

two or more data points for the same measure. Note that much of the psychometric literature on reliability discusses

reliability across different raters/judges. In infant behavioural research, the raters/judges can be thought of as differ-

ent trials of the same type within a single testing session (e.g., several different preference trials from the same

experimental condition or multiple difference scores across trial pairs), or different testing sessions using the same

task (i.e., test–retest reliability).

To compute measurement reliability from two data points (e.g., from two different testing sessions), researchers

can simply compute Pearson's r using infants' scores across the two sessions. Mathematically, correlations can take

values from �1 to +1, although when computing measurement reliability, we expect values from 0 (no reliability) to

1 (perfect reliability). Negative values imply that individuals who did better on one assessment did worse on the

other, and are usually observed due to low measurement reliability coupled with sampling error.

To estimate measurement reliability from multiple data points (e.g., two or more different trials of the same

type), researchers can compute the Intraclass Correlation Coefficient (ICC), for example using the psych package in R

(Revelle, 2021; see also Parsons et al., 2019), or through the SPSS menu options Analyse ! Scale ! Reliability Anal-

ysis. The ICC ranges from 0 to 1, with higher values representing better measurement reliability. Koo and Li (2016)

provide as a rule of thumb that ICC values below 0.5 indicate poor reliability, values between 0.5 and 0.75 indicate

moderate reliability, values between 0.75 and 0.9 indicate good reliability and values greater than 0.90 indicate

excellent reliability.

The ICC has several different variants, and researchers will need to take four considerations into account in

selecting the most appropriate one (Koo & Li, 2016). The first is whether all participants encountered the same items,

which will most often be the case in infant behavioural research. The second is whether the researcher wishes to

generalize beyond the specific items tested (i.e., fixed versus random effects), which will usually be the case in infant

experiments. The third is whether the researcher is interested in consistency (i.e., the degree to which participants

are in the same rank order across timepoints) or in absolute agreement (i.e., the degree to which participants have

the same exact scores across timepoints). The fourth is related to how the measurement will take place in the future,

and usually depends on whether researchers are comparing across multiple testing sessions (single rater type), or

across trials within a single testing session (multiple raters type).

For the bulk of cases, where researchers use the same materials for all participants and wish to generalize

beyond their particular stimulus set, the ICC should be calculated using a two-way random-effects model. Infant

researchers will often be more interested in consistency than absolute agreement, given that absolute scores often

vary due to uninteresting factors such as item salience, practice effects, fatigue, etc. In this most common case, infant

researchers should use the single measures variant (ICC3 in the psych package of R) when computing ICC across mul-

tiple testing sessions and should use the multiple measures variant (ICC3k in the psych package)3 when computing

ICC within the same testing session. While this recommendation will be appropriate in many or most cases, the
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choice of which ICC variant(s) to report must be informed by the researcher's specific experimental design and

research goals. We refer readers to Koo and Li (2016) and Parsons et al. (2019) for more detailed guidance.

As an example of how to compute the ICC using the psych package, we provide sample code that analyzes open

data from ManyBabies 1 (ManyBabies Consortium, 2020) available at https://osf.io/e7j9k. In ManyBabies 1, a large

group of labs collected looking-time data comparing infants' interest in infant-directed versus adult-directed speech.

Infants heard up to eight pairs of trials where their preference for infant-directed speech could be measured, and

thus reliability of their preference scores can be estimated within the same test session. The obtained ICC value

might be reported as follows:

Reliability of the looking time difference to the infant-directed speech (IDS) stimuli versus the adult-

directed speech (ADS) stimuli across the 8 trial pairs was estimated with an intraclass correlation coef-

ficient (ICC), based on a mean-rating (k = 8), consistency, 2-way random-effects model (ICC3k) using

the psych package in R (Revelle, 2021). The estimated consistency was .14, 95% CI = [.09, .18].

An ICC value of 0.14 is quite far below the bar that Koo and Li (2016) set indicating poor reliability (values below .5),

suggesting that infants' preference for infant-directed speech was not very stable at the individual level. Referring to

the final row of Table 3, if this measure was correlated with infants' performance on another measure with similar

reliability (say another looking time measure), more than 2000 infants would be needed to reliably detect a correla-

tion. Ongoing investigations into test–retest reliability (Schreiner et al., 2020) and correlations with standardized

measures of later language development (Soderstrom et al., 2020) confirm the observed low reliability and their plan-

ning would have benefitted from knowing the ICC.

Beyond considering the magnitude of the observed ICC, there are several further considerations researchers will

need to take in interpreting estimates of measurement reliability. First, it is important to note that the meaning of

measurement reliability estimated from infant data will depend on the timeframe across which the different mea-

surements were taken. For infants, we might not expect a lot of change in true ability if the measures are taken

within the same testing session or only a week apart, but we might expect a large change if the two measures are

taken a year apart. In the first case, the measurement reliability estimate would reflect the dependability of the mea-

sures, and in the second case, it would additionally reflect the stability of the trait (Hussey & Hughes, 2020).

Second, as illustrated in the previous section, measures can yield large effect sizes without having reliable mea-

sures, and vice-versa. Group-level studies should not be criticized on the basis of low measurement reliability, just as

individual differences studies should not be criticized on the basis of small effect sizes. However, in the context of stud-

ies where both group-level and individual differences are examined (e.g., a researcher compares groups of infants from

different backgrounds, and also tests whether performance is correlated with vocabulary size), a careful examination of

both effect sizes and measurement reliability is necessary for interpreting the observed pattern of results.

Because reporting measurement reliability has not been standard in infant research, many infant researchers lack

the necessary training on how to estimate measurement reliability, or examples of how to report such information in

their papers (for a recent example of an infant study that did report measurement reliability see Egger, Rowland, &

Bergmann, 2020). We hope that the information provided here will help infant researchers to embrace a standard

practice of computing and reporting the measurement reliability of infant measures. Even when less relevant to a

particular study's goals, reporting measurement reliability is useful for guiding the design of future studies, for exam-

ple, to determine whether an experimental paradigm is suitable for studying individual differences. Sharing trial-level

data is also beneficial, as it enables other researchers to compute different metrics of measurement reliability. In

studies where it is not possible to estimate reliability (for example, in habituation tasks where there is a single critical

test trial), researchers can simply state that, to their knowledge, there is no procedure to estimate the reliability of

the measure (Parsons et al., 2019). Researchers planning longitudinal studies should consider including the same

measure at multiple timepoints in order to estimate the test–retest reliability of their measures, especially in tasks

where it is not possible to estimate measurement reliability from a single testing session. Routine reporting of both

effect sizes and measurement reliability will go a long way to improving the robustness of infant research.
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6.2 | Solution 2: Select the best measurement tool

Researchers in many branches of psychology routinely aim for measurement tools with high validity and measure-

ment reliability, while balancing other concerns such as ease of administration. By contrast, infant researchers often

make methodological decisions based on historical convention, rules of thumb, and standard laboratory practices,

rather than on the known psychometric properties of our methods (DeBolt et al., 2020; Eason, Hamlin, &

Sommerville, 2017; Oakes, 2017). Although there are many factors that have contributed to this state of affairs (the

difficulty of testing infant participants being especially salient), one important factor is that researchers do not have

the necessary information about effect sizes or measurement reliability, as these have not always been measured or

reported in the literature.

Recent efforts have begun to systematically gather information about the effect sizes of different infant tasks, mak-

ing this information much more accessible than before. For example, MetaLab (https://metalab.stanford.edu) is an

aggregation platform for meta-analyses of infant cognitive and language research. At the time of writing the database

contained information from 30 meta-analyses, all of which are coded for moderators such as age and methodological

factors in a standardized format. Thus far, MetaLab focuses on measures of observed effect size (e.g., Cohen's d)

because this information can typically be extracted from published papers. Researchers can look up the expected aver-

age effect size of commonly used infant paradigms in the published literature, keeping in mind that estimates may be

inflated due to publication bias and that moderators such as age and methodologies are not randomly assigned.

Unfortunately, MetaLab does not (yet) include information about the measurement reliability of infant methods,

as this would require papers to either report reliability statistics (which is extremely rare), or to provide trial-level

data (which is often unavailable, although it is becoming more common). Until measurement reliability estimates are

available in a central repository, researchers will need to compute the internal consistency of comparable measures

in existing datasets from their own or other labs (for an example of this approach, see DeBolt et al., 2020), using the

approaches described in the previous section.

Large-scale collaborations are also beginning to provide information about the effect size and measurement

reliability of infant paradigms. For example, labs participating in ManyBabies 1 (which tested infants' preference

for infant-directed speech over adult-directed speech in a looking time paradigm) were free to use one of three

common infant methods (ManyBabies Consortium, 2020). The observed effect size was larger for labs that

tested using headturn-preference than those that used central fixation or eye-tracking, even controlling for fac-

tors such as infants' language background and age (see Table 4). An in-progress pre-registered study is examin-

ing the measurement reliability of the ManyBabies 1 task using a test–retest approach (Schreiner et al., 2020).

In line with other reports (e.g., Cristia, Seidl, Singh, & Houston, 2016), overall estimated measurement reliability

was low, although reliability was higher when the analysis was limited to infants who contributed more valid

test trials.

Without adequate effect sizes (for group-level studies) or measurement reliability (for individual-differences

studies), infant research is ‘bound to fail’ (Rouder & Haaf, 2019). Where it is available, it is crucial that researchers

use information about effect size and measurement reliability in guiding infant study design and interpretation.

Where it is not available, the field may wish to devote resources towards measuring the reliability of common para-

digms. Nonetheless, once both effect size and measurement reliability estimates are more regularly reported in the

literature, they will provide important guidance for researchers designing studies.

6.3 | Solution 3: Develop better infant paradigms

As the field begins to understand the measurement properties of our current paradigms, we may find that some

areas of research lack paradigms with acceptable effect sizes for group-level studies, and/or measurement reliability

for individual differences studies. It is possible that some paradigms produce stable individual differences but weak
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group-level results, or vice-versa. A fuller understanding of the measurement properties of our current methods can

serve as a guide for research areas ripe for methodological innovation, pointing to where the field most needs to

develop better infant paradigms. Paradigms with large effect sizes and strong measurement reliability will both be

needed. Here, the solution is long-term rather than immediate: researchers will need to conduct more studies on

infant methodology, and the field at large will need to value and support such efforts. In the next paragraphs, we pro-

vide several examples of this type of methodological work.

Houston, Horn, Qi, Ting, and Gao (2007) sought to develop a task that would allow reliable assessment of

speech discrimination in individual infants, which could be useful for clinical diagnosis. However, as Houston et al.

pointed out, existing tasks had been developed to maximize effect size, rather than measurement reliability. Houston

et al. developed three variants of a visual habituation procedure, used a test–retest approach to estimate measure-

ment reliability, and identified one particular variant that appeared to have higher reliability than the others. Note

that only 10 infants were tested per variant, making these specific results highly preliminary (see also de Klerk, Veen,

Wijnen, & de Bree, 2019, for a replication study that reported a much-reduced effect size, and Schott, Rhemtulla, &

Byers-Heinlein, 2019, for a discussion of why results from small-scale pilot studies can be misleading). Nonetheless,

this paper provides a nice example of how infant researchers can think about the development of infant procedures

with better measurement reliability.

Work directly aimed at improving infant behavioural methods is complemented by other methodologically-

related research. For example, Santolin, Garcia-Castro, Zettersten, Sebastian-Galles, and Saffran (2020) recently

reported evidence that infants' experience with a paradigm is related to the direction of preference they show

(i.e., whether infants attend more when they hear novel versus familiar stimuli). Specifically, infants who had partici-

pated in fewer head-turn preference procedure studies were more likely to show a familiarity preference than those

who had participated in more such studies. As another example, ManyBabies 5 is conducting a large-scale collabora-

tive study aimed at understanding the processes that underlie looking time, which could be beneficial for designing

looking time experiments with larger effect sizes and/or better measurement reliability, by holding constant or know-

ingly manipulating factors that affect infant looking times. In general, research that addresses methodological ques-

tions directly could yield a large return on investment, as such results could be used to inform many subsequent

studies and potential clinical assessments.

TABLE 4 ManyBabies 1 effect sizes (d), percentage of included participants (% included), number of participants
needed to test prior to exclusions (N needed—tested, lowest N bolded), and the number ultimately analysed (N
needed—analysed) to yield 80% power under a single-samples t test applying different exclusion criteria (Min # trials)

Min # trials Effect size (Cohen's d) % included N needed—tested N needed—analysed

Central fixation

2 0.29 98 191 188

4 0.34 88 155 137

8 0.40 73 136 99

Eyetracking

2 0.24 85 322 273

4 0.33 59 246 145

8 0.41 36 262 94

Headturn preference procedure

2 0.51 98 63 61

4 0.53 92 62 57

8 0.63 78 52 41

Note: Adapted from Table 6 in ManyBabies Consortium (2020).

12 of 19 BYERS-HEINLEIN ET AL.

 15227219, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/icd.2296 by M

PI 378 Psycholinguistics, W
iley O

nline L
ibrary on [13/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6.4 | Solution 4: Collect more data points per infant

For more than a century, psychometricians have known that, in most cases, a ‘longer’ test (one with more items) will

produce a more reliable score (Brown, 1910; Spearman, 1910; Symonds, 1928). This relatively simple solution—

collecting more data points per infant—has the potential to reduce measurement error, thereby increasing both

effect size and measurement reliability.

To examine how presenting infants with more trials could affect statistical power, DeBolt et al. (2020) conducted

a series of simulations based on data from studies that used preference procedures, where infants' relative looking

time to two images was measured. Across five datasets, they observed variability in the effect size of the tasks, but

near-zero measurement reliability. Their simulation demonstrated that, in such cases, adding new trials from the

same infants can increase power for detecting group-level effects just as much as increasing sample size. Moreover,

the quality of the data did not appear to decrease over time. In another example, Houston et al. (2007) reported

higher measurement reliability from a paradigm that presented infants with more test trials for analysis than in para-

digms that presented fewer trials, which increased the power to detect individual differences (for additional discus-

sion, see Cristia et al., 2016; de Klerk et al., 2019).

There are other approaches that could increase the number of analysed trials per infant without increasing the

number of trials that infants encounter. For example, Egger et al. (2020) created a gaze-triggered looking-while-

listening paradigm where the target (i.e., the object that was labelled on a particular trial) depended on infants' fixa-

tion. This approach provided more trials from which to derive a reaction time score, which in this paradigm crucially

depends on whether the infant was looking to the distractor at the moment of hearing the target word. Another

approach could be to adapt experiments in ways that enable infants to complete more trials, for example by using

varied attention getters between trials, short filler movies, pauses, and so on. The feasibility of these different strate-

gies will depend on the study type and might warrant their own line of research to be able to make an informed

choice as to how to increase experiment duration without compromising data quality.

Certainly, not every type of research question or experimental design will be amenable to increasing the number

of analysed trials per infant. Moreover, there may be limits to this approach as infants become overly fatigued or

fussy. However, in many cases adding additional trials or adapting experiments so that more existing trials can be

analysed is a low-effort option for increasing measurement reliability and experimental power.

6.5 | Solution 5: Exclude low quality data from analysis

Infant researchers have a long history of systematically excluding subsets of their data that are considered to be of

low quality, for example excluding trials with very short looking times, or infants who only contribute a small number

of trials. The intuition is that doing so removes data where infants are ‘off-task’. The rate of such exclusions varies

considerably across studies, with one survey of infant visual paradigms reporting an average rate of 13.7%, with a

wide range of 0–62% (Slaughter & Suddendorf, 2007).

What is the relationship between infant exclusions, effect size, and measurement reliability? ManyBabies

1 addressed this question by applying different infant-level exclusion criteria to their data in a set of exploratory ana-

lyses. Infants participated in up to 16 experimental trials, and effect sizes were calculated when including infants

who contributed 2 or more, 4 or more, or 8 or more useable trials (i.e., up to 50% of the 16 possible trials). As shown

in Table 4, stricter exclusion criteria yielded larger effect sizes. For example, in eye tracking (the method that showed

the most striking pattern), including infants with as few as two trials (one per condition) yielded an effect size of

d = 0.24, while a stricter criterion of including infants with at least eight trials nearly doubled the effect size

d = 0.41. At the same time, stricter criteria decreased the effective sample size, as more infants were excluded from

analysis. Again, eye tracking showed the most striking pattern, with 85% of infants included with the loosest crite-

rion, but only 36% of infants included with the strictest criterion. While ManyBabies 1 focused on the role of infant-
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level exclusion on effect sizes, future explorations of this dataset can also investigate the effect of data exclusions

on measurement reliability within the same session. For example, the ongoing assessment of test–retest reliability by

Schreiner et al. (2020) also suggests that limiting the analysis to infants that contributed more trials could substan-

tially improve measurement reliability and in turn increase statistical power.

Infant exclusions can increase effect size (which increases power), but they also decrease the size of the sample

available for analysis (which decreases power). What is the tradeoff between these two factors? Is it better to use a

stricter criterion with a smaller analysed sample, or use a looser criterion with a larger analysed sample? We again

used the data from ManyBabies 1 to explore this question, by calculating how many total infants would need to be

tested to achieve 80% power using the different exclusion criteria. Table 4 indicates the number of infants that

would need to be tested, and the number that would be analysed under different exclusion criteria.

For the headturn preference procedure, the optimal strategy would be to use the strictest criterion: only

52 infants would need to be tested (of which 41 would be analysed) compared to the loosest criterion whereby

63 infants would need to be tested (of which nearly all—61—would be analysed). Similarly, for central fixation, the

optimal strategy would be to use the strictest criterion, which would necessitate testing 136 infants to analyse 99. In

contrast, for eye-tracking, the intermediate strategy of a 4 trial minimum appears optimal, requiring testing

246 infants to include 145 infants in the final analysis, as opposed to the strictest criterion which would require test-

ing 262 infants to include 94 infants in the final analysis.

Overall, this example demonstrates an interesting interplay between inclusion criterion and experimental power,

due to different effect sizes. Different strategies might be optimal for different paradigms, depending on the tradeoff

between gains in effect size versus the loss of participant numbers when stricter inclusion criteria are implemented

(see also Dal Ben, Killam, Pour Iliaei, & Byers-Heinlein, 2021, for another example where stricter inclusion criterion

yielded more robust results). Note that for previous studies on infant-directed speech, when stated, inclusion criteria

were much stricter than the strictest criterion assessed in ManyBabies 1 (50%), often requiring infants to complete

100% of trials (e.g., Fernald & Kuhl, 1987; Inoue, Nakagawa, Kondou, Koga, & Shinohara, 2011). It is an open ques-

tion whether additional gains can be made in applying even stricter inclusion criteria than those explored here.

Finally, it is important to consider whether there are systematic reasons why particular infants are fussy/inattentive,

given that some causes of missing data are of greater concern than others (Rubin, 1976). For example, if each infant has

a similar probability of being fussy on any given day, then the data from infants remaining after exclusions will still be

representative (i.e., data are missing at random). However, if particular infants are inattentive specifically because they

are overly challenged by the experimental task compared to other infants, then observed effect sizes will be inflated

after excluding such infants (i.e., data are missing not at random, and retained infants are not representative of the full

sample). More research will be needed to better understand the underlying reasons for infant fussiness/inattention.

In sum, optimizing approaches to data exclusion can increase observed effect size and in turn statistical power,

without necessarily requiring testing more infants, although this approach will need to be tested beyond the case stud-

ies discussed here. Note that to avoid p-hacking, plans for data exclusion should be pre-registered (see Havron,

Bergmann, & Tsuji, 2020). At the same time, transparent exploration of the effects of different exclusion criteria, even if

not pre-registered, could provide researchers with guidance in developing data exclusion plans for future studies.

6.6 | Solution 6: Conduct more sophisticated statistical analyses

Infant behavioural research has historically relied on analytic techniques such as t-tests and ANOVAs, which collapse

responses across time and across trials to yield one or two data points per infant for analysis. Indeed, the examples

in this paper so far have been within this framework. However, in its raw state, infant data is considerably richer than

what is often analysed, with infants contributing data points on multiple experimental trials, and/or fine-grained data

within trials such as looking patterns over time.

In traditional analytic techniques, variation over time or trials ends up lumped together and is attributed to mea-

surement error. However, infant researchers are aware, at least implicitly, of systematic sources of variance hidden
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within these data. For example in many studies, infants tend to habituate over time, such that overall attention

decreases across trials. As another example, some test items might be more difficult for infants than others

(e.g., Donnelly & Kidd, 2021).

Using more sophisticated analytic techniques, it is possible to directly model these known sources of variance,

so that the focal sources of variance (e.g., experimental manipulations, age effects) can be more precisely quantified

(Gelman, 2006). Approaches such as mixed-effects models can take into account individual differences across partici-

pants or items (random effects), as well as fixed effects such as linear increases or decreases in performance across

trials. With more accessible software packages, better computing power, and advanced statistical techniques, it may

be possible to do more with the data we have. Below, we illustrate with three examples.

As a first example, a recent paper (Dal Ben et al., 2021) investigated cognitive differences between 7-month-old

monolingual and bilingual infants based on the seminal work of Kovács and Mehler (2009). On nine training trials,

infants saw a central cue followed by a reward on one side of the screen and on nine test trials, the reward switched

sides such that it appeared on the opposite side of the screen (sides were counterbalanced). In Kovács and Mehler's

original paper, data had been averaged across 3-trial blocks to yield up to six data points per infant. However, Dal

Ben, Killam et al. applied an updated analytic technique that modelled the change in performance on trials over time,

as well as the slope of infants' looking within trials, to yield up to 80 data points per infant. Comparing the original

and updated techniques using newly-collected data as well as several other open datasets, the paper reported robust

differences between monolinguals and bilinguals only with the more sensitive analysis, and not with the original one

(see also Humphrey & Swingley, 2018; for a simulation of a similar approach with infant data).

As a second example, de Klerk et al. (2019) tested infants in a discrimination task. Infants saw a series of alter-

nating (fap-fep) and non-alternating (fap-fap) trials. At the group level, infants at 6, 8, and 10 months old clearly dis-

criminated the contrast. The authors also wished to determine which individual infants discriminated the contrast.

Following the individual-level regression procedure developed by Houston et al. (2007), they found very limited evi-

dence for individual-level discrimination. However, using a Bayesian Hierarchical modelling approach, which incorpo-

rated information from each age group to inform the model for each individual infant, they found evidence for

individual-level discrimination in 77% of 10-month-olds, 53% of 6-month-olds, and 27% of 8-month-olds.

As a final example, van Renswoude et al. (2018) noted that typical eye-tracking software detects fixations and

saccades using algorithms that are optimized for adults, which do not consider individual differences in eye move-

ments. They developed a software tool called ‘GazePath’ that takes individual behaviour at the trial level into

account and interpolates missing data. Across several different infant and adult datasets, the researchers demon-

strated the efficacy of their method for picking up on small eye movements that traditional algorithms missed, as well

as for processing noisy infant data.

These three examples illustrate the diversity of ways that advanced statistical and computational techniques,

particularly ones that model data at a fine level of granularity, can in some cases better separate signal from noise,

thus making data from extant infant paradigms more informative. The evidence presented here about these particu-

lar analytic approaches is anecdotal, and methodological research will be needed to better understand which statisti-

cal approaches maximize statistical power in the context of infant research. Nonetheless, we hope that particularly

with the rise of open data, analyses such as the ones outlined here can further showcase the use of specific statistical

modelling techniques for infant data and allow researchers to build on previous work when planning and pre-

registering their own analyses.

7 | CONCLUSION

Infant research can benefit from carefully considering the properties of our measures. This paper has distinguished

two important types of reliability: whether an effect is reliable (shows a large group-level effect size) and whether a

measure is reliable (has high precision). Effect size and measurement reliability may be optimized under different con-

ditions, and researchers should be aware of which one is most relevant to their research question. Effect size is
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important for studies looking at group-level effects, whereas measurement reliability is important for studies looking

at individual differences. Here, we have illustrated six ways that infant researchers—both individually and as a field—

can improve measurement at each step of the research process: routinely reporting effect size and reliability statis-

tics, selecting the best measurement tool, developing improved paradigms, collecting more data points per infant,

excluding low-quality data from analysis, and applying more sophisticated analytic techniques.

There are multiple considerations as we embark on this work. First, improving effect sizes and measurement reliability

of infant research must go hand-in-hand with careful consideration of measurement and ecological validity (Kominsky,

Lucca, Thomas, Frank, & Hamlin, 2020). Second, developmental changes over time, as well as cross-population differences,

could impact both the effect sizes and measurement reliabilities of our paradigms. Finally, we must guard against undis-

closed flexibility in research, which can undermine our best efforts (Davis-Kean & Ellis, 2019). A more concerted consider-

ation of measurement in infant research has the potential to increase experimental power independently of increases in

sample size, and will ultimately yield a more robust and replicable science of infant development.
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ENDNOTES
1 Specifically, we first calculated the total variance by summing true score variance and measurement variance (themselves

calculated by squaring their respective standard deviations). Taking the square root of this value, we arrived at the

observed standard deviation, which we used to calculate Cohen's d = mean/SD. rxx is calculated by dividing the true score

variance by the total variance. The reported values reflect these calculations, rather than the values from the plotted

infants, which are for illustrative purposes only.
2 Mathematically, the observed correlation is the true correlation times the product of the square root of each measure's

reliability, following the formula robserved = rtrue sqrt(rxx * ryy) (Spearman, 1904).
3 Note that, with complete data, ICC3k is equivalent to Cronbach's alpha, which can also be computed using the alpha func-

tion in the psych package in R (Revelle, 2021), and via the Analyse ! Scale ! Reliability Analysis menu options in SPSS.
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